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1. INTRODUCTION

For over two decades it has been known that the attenuation of
electromagnetic waves propagating in the earth-ionosphere waveguide is
particularly low for frequencies less than 300 Hz (References 1, and
2), i.e., for frequencies in the lowest ten percent of the extremely-
low-frequency band (ELF; frequencies in the range 5 Hz-3 kHz).
Further, because these waves are reflected from the base of the iono-
sphere, with 1ittle penetration, it would be expected that their
propagation would be more stable during natural or man-made ionospheric
disturbances than the waveguide propagation of higher frequency waves.
For these reasons, and because the lower-frequency ELF signals can
reach depths in the sea on the order of 100 m before the signals
become too attenuated for reception (the skin depth for a 100 Hz
signal in the sea is about 25 m), there has been an interest within
the U.S. Navy in the possible use of ELF signals for worldwide
comnunication with submerged receivers from a single land-based
transmitter (Reference 3). Research sponsored by the Navy on the
generation and propagation of ELF signals has been conducted largely
under the names 'Sanguine' (References 4, 5, 6, and 7) and, more
recently, 'Seafarer' (Reference 8). As a result of this research,
our knowledge of the properties of naturally occurring ELF signals
and of the propagation characteristics of man-made ELF transmissions
(predominantly from the Navy's Wisconsin Test Facility described by
White and Willim [Reference 9] and Bannister [Reference 10]) has
greatly expanded in recent years.

The temporal stability of ELF signal propagation over large dis-
tances was one of the important issues studied during the Sanguine/
Seafarer projects. It was found that the propagation was indeed very
stable, despite some variability at night (e.g., References 9, 10, 11,
12, 13, 14, 15, and 16). However, because the Wisconsin Test Facility
only became fully operational in 1971, just after the maximum phase of
the last sunspot cycle, the measurements were of necessity made almost
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entirely at times that were relatively quiet in terms of ionospheric
behavior. In particular, no measurements were made of the effects of

a solar proton event (SPE) on ELF signal propagation along paths passing
through the polar regions.

There are several reasons why ELF signal propagation through the
polar regions could be expected to be affected by an SPE. The most
general reason follows from the observation of SPE-related changes at
frequencies above the ELF range: it is well-known that electromagnetic
waves with frequencies above the ELF range are susceptible to a wide
variety of SPE effects when propagating either directly through the
polar ionosphere or through a polar region in the earth-ionosphere
waveguide. These effects include intense absorption, now known as
polar-cap absorption (PCA), for waves with frequencies in the HF (3-30
MHz) and lower VHF (30-300 MHz) bands, and phase and amplitude changes
for waves with frequencies in the VLF (3-30 kHz) and LF (30-300 kHz)
bands (References 17, 18, 19, and 20). Because of their proximity in
frequency to the ELF range, and their stability of propagation (which
has led to the use of these frequencies for communication, navigation,
and precise time and frequency comparisons over global distances [Refer-
ence 20]), the SPE-induced changes in the propagation characteristics
of the VLF waves are of particular significance. Studies of these
changes, and the changes at higher frequencies, have shown that they
are caused by the Targe increases of ionization produced by SPE's below
the normal D-region base of each polar ionosphere (e.g., Reference 21).
Thus there is a more specific reason to expect an SPE effect at ELF:
the characteristics of the earth-ionosphere waveguide for ELF wave
propagation in the polar regions during an SPE are altered, just as
they are altered for VLF and higher-frequency wave propagation.

Crain and Booker (Reference 22) were the first to point out the
important role of the ions in these anomalous regions of ionization in
affecting VLF and LF transmission. In an important theoretical analysis,
Field (Reference 23) showed that the propagation of ELF waves in the
earth-ionosphere waveguide could be strongly influenced by the ionic
component of the anomalous D-region ionization produced during an SPE.
In a discussion of this work, Wait (Reference 8) comments that "under
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such PCA conditions ions are really controlling the [ELF] propagation."
Although experimental measurements of ELF wave propagation through the
polar regions during an SPE are lacking, anomalous enhancements of D-
region jonization similar to those occurring in the polar regions during
an SPE are produced on occasion by the precipitation of energetic
electrons, and these enhancements have been shown to cause ELF signal
propagation anomalies (References 13, 14, 15, 16, and 24). (Similar
effects have also been observed at VLF [Reference 25].) It is particu-
larly relevant to the present study that these anomalies in ELF signal
propagation do not always degrade the quality of the signal: both the
experimental measurements and the results of computations using a
waveguide model computer program (References 24, and 26) indicate that
the strength of the ELF signals may be either increased or decreased,
depending on (1) the location of the propagation paths relative to the
regions of charged particle precipitation and (2) on the spatial extent
and composition of the resulting ionization. Nevertheless, it is
worthwhile noting that the majority of the propagation anomalies
reported to date have involved a reduction in ELF signal strength.
Although the Wisconsin Test Facility was not operating during
the Tast solar maximum, there were research stations in the Antarctic
making recordings of naturally occurring ELF signals, and it is possible
to obtain information about SPE effects at ELF in the polar regions by
analyzing these recorded data. The purpose of this report is to
present results obtained from measurements on naturally occurring ELF
sferics recorded at Byrd Station, Antarctica, during a moderately
large SPE. The results are limited by several factors. First tne
sferic observations were made at a single station, and it has been
recognized for some time (e.g., Reference 2) that multi-station
observations can provide more definitive information (since it is
possible to determine the location of the sferics). Second, the SPE
occurred in the middle of the austral winter, when the entire southern
polar cap ionosphere was in constant darkness. Our results are there-
fore only strictly applicable to these ionospheric conditions. Finally,
there was a Timitation on the quantity of data we could process, and
a full statistical analysis of many days or even months of sferic data
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to determine their undisturbed characteristics in detail was outside the
scope of this effort. Because of this statistical limitation, our
results are indicative and not definitive. Despite these limitations,
our measurements appear to be the first of their kind, and they provide
new information about SPE effects on ELF sferics at a polar location,
and they indicate that ELF signal propagation through the polar
regions can be affected significantly by the occurrence of an SPE.
Our case study suggests that the signal strength is more 1ikely to
be degraded than to be enhanced, but further measurements using a
controlled source and multi-station observations during the upcoming
solar maximum phase are desirable to determine the general form of
the SPE-induced ELF propagation anomalies.

To conclude this introduction, we note that we have been unable
to find a specific definition of the term 'solar proton event,' even
though a classification system has been introduced for these events
(Reference 27) and the term is used extensively in the literature.
Further, the abbreviation SPE is sometimes used to denote 'solar
particle event' (e.q., Reference 21), which is not necessarily
synonymous with 'solar proton event.' Possible confusion may also be
caused by the term 'polar-cap absorption event' or, equivalently,
'"PCA event,' which preceded the other terms historically and which is
often used alternatively with solar proton event (as pointed out by
Hultqvist [Reference 28]). We will use solar proton event to denote
the terrestrial atmospheric effects produced by a solar proton flare
(References 29, and 30). These terrestrial effects include the produc-
tion of anomalous ionization in the ionospheric D-region, which in
turn causes polar-cap absorption. Thus PCA will be used in its
original restricted sense.
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[I. THE SPE OF 9 JUNE 1968

At 0830 UT on 9 June 1968, a flare with an importance in the range
2N to 4B (classified as 3B by Svestka and Simon [Reference 31])
commenced on the southern hemisphere (S14, W08) of the sun and initiated
a number of interplanetary and terrestrial phenomena before it ended
near 1120 UT. Less than two hours after the start of the flare, the
earth-orbiting Explorer 34 satellite detected substantial increases
in solar proton intensities in the energy ranges Ep > 10 MeV, Ep > 30
MeV, and Ep > 60 MeV (Reference 32). The durations of the increases
varied with the proton energies: over 24 hours for the Ep_z 60 MeV
range, and until 12 June for the Ep > 10 MeV rangz2. Other satellite
measurements and one balloon measurement of the energetic particles
produced by the flare are tabulated in summarized form by Svestka and
Simon (Reference 31). Large-scale terrestrial changes commenced with
the arrival of these solar protons in the earth's upper atmosphere. In
particular, a PCA event began at approximately 1000 UT (Reference 31).
Measurements by Masley and Satterblom (Reference 33) with riometers
at the two magnetically conjugate polar stations McMurdo Sound,
Antarctica, and Shepard Bay, N.W.T., Canada, gave a maximum absorption
of 6.0 db at 30 MHz. By this measure, the PCA event was the seventh
largest of the 31 events with at lTeast 1 db of observed daytime 30 MHz
riometer absorption tabulated by Zmuda and Potemra (Reference 20) for
the 1965-1969 solar maximum period. Svestka and Simon (Reference 31),
using the SPE notation of Smart and Shea (Reference 27), list an
importance of 230 for the event.

Geomagnetic storms generally form a component of the terrestrial
effects comprising an SPE, even though they are not caused by the
energetic (10-100 MeV) protons that produce the most characteristic
SPE effects. Instead, the SPE-associated geomagnetic storms are
caused by the bursts of solar plasma that are emitted from the active
regions containing the proton flares. Because the energies of the
charged particles in the plasma are low (the proton energies are
typically less than 1 keV), the bursts of plasma take considerably
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longer to reach the earth than the 10-100 MeV protons. In the case of
the 9 June 1968 SPE event, the major geomagnetic storm that formed part
of the event started with a sudden commencement at 2154 UT on 10 June.
There was therefore a delay of about 36 hours between the start of the
SPE and the start of its component geomagnetic storm. Figure 1 shows
the variation of the three-hour geomagnetic activity index ap and of the
auroral electrojet activity index AE for the interval 5-13 June. It is
interesting to note that the AE index began to respond to the SPE over
24 hours before there was any large response of the ap index. The
latter index reached its greatest amplitude in the interval 03-06 UT on
11 June, and the geomagnetic storm, as measured by ap (or, equivalently,
by the Kp index), was the largest in the one year interval 1 October
1967 through 30 September 1968.

As noted in the introduction, no measurements of the propagation
characteristics of man-made ELF signals through a polar region are
available for this SPE. However, measurements made in Hawaii of the
phase differences between the 10.2 kHz (VLF) transmissions from Omega
stations in Norway and Hawaii showed that by 1100 UT on 9 June the SPE
was affecting the Norway-Hawaii propagation path, which passes through
the north polar region (Reference 34; W. F. Moler, Personal communication,
1978). The maximum disturbance of the VLF signals propagating along
this path occurred during 11 June, and the effects of the SPE finally
disappeared late on 13 June. Svestka and Simon (Reference 31) report
that the PCA reached a maximum near 08 UT on 10 June and thereafter
declined until it became unmeasurable on 12 June (the duration of the
PCA was about 63 hours). The difference in the duration of the SPE is
consistent with the observation by Reid (Reference 19) that PCA effects
on long-distant VLF circuits are generally of much longer duration than
the absorption effects.

At the time of occurrence of the 9 June 1968 SPE, synoptic ELF/VLF
measurements were being made routinely at Byrd Station, Antarctica, by
Stanford University researchers. These measurements were intended for
studies of naturally occurring signals in the upper ELF and VLF ranges,
and the frequency response of the recording system began to drop off
below 100 Hz. Thus there was a possibility that the synoptic measurements
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Figure 1. Variation of the three-hour geomagnetic activity index ap
and of the auroral electrojet activity index AE for the interval
5-13 June 1968. The SPE started before 1200 UT on 9 June, although
this is not evident in the activity indices.
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could not be used to study SPE effects on ELF signals with frequencies
in the Sanguine/Seafarer range. However, for this one SPE, continuous
recordings of natural ELF signals were also being made by using an
exceptionally long (33.5 km) dipole antenna and a system with good
frequency response down to about 10 Hz. Since it appeared that adequate
ELF data would be available, we undertook a case study of the properties
of the ELF sferics occurring at Byrd Station during the course of the

9 June 1968 SPE, with the results reported in the following sections.
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ITI. BYRD STATION DATA

Byrd Station (79.98°S, 120.02°W; geomagnetic latitude 70.4°S; see
Figure 2) was established during the International Geophysical Year
(1957-1958) as a facility for geophysical research in the Antarctic,
and Stanford University operated ELF/VLF receivers and other geophysical
measuring apparatus at this station throughout the interval 1958-1971.
The research programs varied from year to year, but they consistently
included synoptic magnetic tape recordings of ELF/VLF activity. The
most common format for these analog recordings, and the one relevant
to the present study, was to record four one-minute intervals of
activity each hour, starting at 5, 20, 35, and 50 minutes after the
start of the UT hour. During the initial few seconds of each of these
one-minute intervals, a known 5 kHz amplitude calibration signal was
injected into the system. Three loop antennas were buried beneath the
snow surface and were used to measure the north-south (N-S), east-west
(E-W), and vertical (V) magnetic components of the ELF/VLF signals.

In addition, a vertical whip antenna was available to measure the
vertical electric component of the signals. However, not all these
signal components were recorded on magnetic tape at all times. During
the 9 June 1968 SPE, only the N-S loop antenna was used for the synoptic
recordings. Thus, for this event, the recording system had maximum
response to ELF/VLF signals travelling in a N-S direction (or S-N direc-
tion) and no response to signals travelling in an E-W (or W-E) direction.
It should also be pointed out that the N-S line was determined by com-
pass. Thus the horizontal N-S and E-W directions were neither
geographic nor geomagnetic, but were determined instead by the location
of the southern magnetic dip pole. We will describe these directions

as being magnetic N-S and E-W.

Data acquisition at Byrd Station included the routine collection
of analog data on eight-channel paper strip charts. The format of the
chart recordings varied; at the time of the 9 June 1968 SPE the first
four channels recorded the output signals from (1) an H-field magne-

Fa e S B 4D T rne s e e

tometer, (2) a 30-MHz riometer, (3) a Y-component (i.e., geographic E-W)
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Figure 2. Map showing the location of Byrd Station in the Antarctic.
Also shown are the approximate locations of the south geomagnetic
pole and the dip (or magnetic) pole. The hatched, dashed, and dotted
lines outline the location of the auroral zone. The figure is based
on Figure 1 of Morozumi and Helliwell (Reference 35).
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ULF magnetic pulsation sensor (0.02-5 Hz), and (4) HF hiss detectors at
0.5 MHz and 4.9 MHz (two traces). The remaining four channels recorded
the integrated signal amplitudes in the following frequency bands:

(5) 61-75 kHz (LF), (6) 31-38 kHz (LF), (7) 11-13 kHz (VLF), and (8) 1-2
kHz (upper ELF). Time marks on the charts enabled the time of any
distinct feature to be determined to an accuracy of about *10 s. As a
relevant illustration of the form of these data, Figure 3 shows a
section of the chart for 9 June 1968.

Inspection of the chart records for the interval 8-15 June 1968
confirmed the general features of the SPE outlined in the previous
section. One difference was a start time of 1215 + 0005 UT on 9 June
(see Figure 3) for the Byrd PCA, which is later than the 1000 UT (time
accurate to within an hour) listed by Svestka and Simon (Reference 31).
Reid and Sauer (Reference 36) observed the simultaneous onset of PCA
at Byrd (southern auroral zone), South Pole (geographic south pole),
and Vostok (geomagnetic south pole) during the SPE of 5 February 1965.
However, such simultaneity is exceptional, and it is usual for a delay
of an hour or more to occur between the observation near the geomagnetic
pole of the first stage of a PCA event and the sudden extension of the
PCA to auroral and lower latitudes (Reference 28).

There was an interesting correspondence (within the uncertainty of
+5 m) between the start of the PCA and the start of a lengthy interval
of geomagnetic pulsation activity. The pulsations could be classified
as belonging to the category Pc *Z (periods in the range 10-45 s),
because they were regular and had a period of about 35 s. Later, these
pulsations become very large and irregular, particularly after the
start of the geomagnetic storm on 10 June, which was clearly recorded
on the magnetometer channel. A correspondence between the start of a
burst of geomagnetic pulsations and the onset of riometer absorption
was first noted by Morozumi (Reference 37) in data from Byrd Station;
the correspondence was later studied in greater detail by Chivers
(Reference 38), using data from the more northerly Siple Station. How-
ever, there are different forms of riometer absorption and no Tink
appears to have been made previously between PCA specifically and the
occurrence of Pc 3 pulsations. If there is such a link, as our

15
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Figure 3. Reproduction of a section of the Byrd Station strip chart

record for 9 June 1968. The large signal occurring at about 1240
UT in the ULF channel is produced by the ULF calibration system.
A cross next to a small dip in the magnetometer trace was inserted
by the station operators to indicate that the dip is artificial.
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observation suggests, it could provide a test of the present theory of
generation of the pulsations (see Reference 39 for a description of
this theory), since an influx of 10-100 MeV protons into the lower
ionosphere is a particularly well defined source of stimulation.

The Byrd riometer recorded two maximums of absorption on 10 June
1968: one, the smaller, occurred at about 0530 UT and the other at
about 1300 UT. The riometer was even more strongly affected on 11 June,
during the main phase of the geomagnetic storm. Particularly strong
absorption was recorded during the intervals 0330-0430 UT and 1400-1900
UT on this day, during which times very large and irregular geomagnetic
pulsations were also observed. The riometer thereafter began to recover,
but it did not finally return to its initial quiet level until 15 June.
The activity recorded on the other radio channels appeared to be
affected by the SPE for a shorter time. Following the start of the SPE,
the signals in each of the ELF, VLF, LF, and HF channels dropped either
~ to zero or to Tow levels and remained there until 11 June, when some
activity reappeared in these channels, and there was a large burst in
the 1-2 kHz channel during the interval 1400-2000 UT.

An unusual feature of the eguipment at Byrd Station during the
austral winters of 1967-1969 was a VLF transmitting antenna consisting
of two exceptionally long horizontal dipoles. One of these dipoles was
33.5 km long and was aligned in the magnetic N-S direction; the other,
17 km Tong, was perpendicular to it. More complete details of the
antenna are given by Siren (Reference 40). The antenna was used
primarily to send VLF signals in various modes of elliptical polariza-
tion to satellites passing over the station. However, it was aiso
possible to use the dipoles as receiving antennas, and in each of the
winters of 1967-1969 the 33.5 dipole was used for a series of "longwire"
recordings of natural ELF/VLF activity. These recordings were distin-
guished from the synoptic recordings primarily by the fact that they
were continuous. Their frequency response was also superior below
100 Hz: the longwire recordings covered frequencies down to about
10 Hz, whereas the synoptic recordings were not intended to give
information below about 100 Hz. At the time this study was undertaken
it was unclear whether the synoptic recordings could be used to study
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SPE effects on ELF signals with frequencies below 100 Hz.

Since both synoptic and longwire ELF/VLF recordings were availa-
ble for the 9 June 1968 SPE, frequency displays of overlapping inter-
vals of data were prepared and the frequency responses of the two
recording systems compared. The comparison showed that the synoptic
data gave information about sferic occurrences down to a frequency of
about 40 Hz. Figure 4 shows an example of this comparison, together
with some typical ELF sferic activity. Because the synoptic data were
already in a convenient sampled form (one minute of data every 15
minutes), and each sample contained a known calibration signal that
could be used to check the stability of the recording system (the

longwire recordings were not calibrated), we decided to use the synoptic

data to investigate the behavior of the ELF sferics recorded at Byrd
during the SPE. A choice of frequencies was required; we chose 75 Hz,
since frequencies in the range 70-80 Hz are often used in experiments
involving the Wisconsin Test Facility and frequencies in this range
can probably be considered to be prime candidates for use in a larger-
scale ELF communication system.
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Figure 4. Spectrograms of ELF/VLF sferic activity at Byrd Station (BY)
during one synoptic minute on 10 June 1968. The top panel shows the
overall activity in the range 0-20 kHz, and the two bottom panels
show a more detailed view of the activity in the range 0-250 Hz, as
recorded on the longwire (LW) antenna and on the regular synoptic
(SYN) loop antenna. The band of minimum activity at 12 kHz in the
top panel is an instrumental effect.
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IV. DATA ANALYSIS

The Byrd Station ELF/VLF synoptic data were analyzed in two stages.
First, the original analog data were converted to digital form by
playing back the magnetic tapes at four times the original recording
speed of 15 ips, filtering, detecting, and integrating the output, and
then sampling and re-recording the data (now in digital form) on
magnetic tape cartridges. Next the digital data were analyzed with an
XDS Sigma 5 computer to obtain the median amplitudes, rates of occur-
rence, and other characteristics of the sferics (75 Hz) occurring in
each one minute synoptic interval.

Considering the first stage of this analysis, a bandpass filter-
amplifier was used to select the frequency passband for the sferics;
its upper and lower cut-off frequencies were set at 310 and 290 Hz,
respectively. The passband gain was 20 db, and the attenuation rate
outside the passband was 48 db/octave. Taking the tape speed-up
factor into account, the effective passband for the sferics was 72.5-
77.5 Hz. The gain of the detector-integrator unit was adjusted to
give output sferic amplitudes predominantly in the range 0-5 V, as
required for input to the digitizer (input voltages in the range —5-+5
V were specified). Occasional very large sferics would produce inte-
grated output signals with amplitudes greater than 5 V; such signals
were assigned an amplitude equivalent to 5 V during digitization. The
input signal to the digitizer was sampled every 3 ms (equivalent to
12 ms in real time), and the A/D conversion resolution was 12 bits,
i.e., the 0-5 V range of the input signal amplitudes was subdivided
into 2048 amplitude units. In the following, when we refer to the
relative amplitude of a sferic, we use the digital amplitude scale of
0-2048 amplitude units.

Although emphasis is given in this work to the temporal changes in
the measured characteristics of the sferics, and no absolute measure
of the sferic amplitudes (i.e., their apparent field strengths) is
required, it is possible to derive an approximate absolute amplitude
measure for the sferics from the calibration signals recorded on the
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original magnetic tapes. When the conversion factor is calculated for
our relative amplitude scale, we find that 1000 of our digital amplitude
units correspond approximately to a field strength of 2 mV/m.

Figure 5 shows a plot of a representative interval of digitized
ELF sferic data. The antenna and recording system were not coupled
during the initial second of this plot, but the ELF data are included
to give an indication of the internal system noise. Numerous sferics
can be seen in the following 5-second interval, including a large burst
starting just after 2.0 s.

To ensure uniformity in the digital data, the original magnetic
tapes were played back and the analog data digitized in one session
without intermediate changes in the gain settings. In addition, the
5 kHz calibration signal amplitudec were monitored on strip chart
recordings during the digitization sessiou: the amplitudes remained
constant to within a measurement accuracy of :0.7%.

In the second stage, following digitization, the data were processed
by computer to obtain the amplitude and occurrence characteristics of the
sferics. Before commencing this processing, however, we adopted an
operational criterion to distinguish sferics of different amplitudes.

In using this criterion, we first divided the sferics into three
categories according to whether successive samples had (1) one or more
increases of amplitude followed by one or more decreases, (2) two or
more increases of amplitude followed by two or more decreases, and

- (3) three or more increases followed by three or more decreases. Two
additional categories were then created by removing the sferics in
category 2 from those in 1 (category 4) and by removing the sferics in
category 3 from those in 2 (category 5). The sferics could then be
divided into three size groups and one inclusive group as follows:

small sferics: sferics in category 4
medium sferics: sferics in category 5
large sferics: sferics in category 3
all sferics: sferics in category 1

This system of classification is used throughout the remainder of this
communication.
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Figure 5. An example of the amplitude fluctuations of 75 Hz sferic
activity observed at Byrd Station. The first 1 second of data

represents system noise.
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Once the sferics in a particular interval of data were divided into
their different categories, it was possible to compute their average
amplitudes, rates of occurrence, times between occurrences, and other
statistical data. Because of the synoptic form of the ELF data, it
was convenient to treat each one-minute interval of sferic data as a
unit. The total number of sferics occurring in these one-minute inter-
vals was variable, but during the period of six days chosen for this
SPE study there were never less than 600. Even in the individual
category with the smallest number of occurrences (medium sferics),
there were never less than 100 sferics in a one-minute interval. Thus
the statistical data derived for these one-minute intervals should be
based on an adequate number of sferics.

Because of the artificial upper 1imit imposed on the amplitudes of
the sferics by our digitization process (exceptionally large sferics
could also possibly be 1imited in amplitude by the finite response of
the original recording system), we computed the median amplitude of the
sferics in each size category in préference to the average amplitude.
However, due to computer storage limitations, we were not always able
to compute the median amplitude for all the sferics in a one-minute
interval. MWe therefore adopted a hydrid approach: the interval of
data was divided into four equal parts, and the median amplitudes
computed for the sferics in each part; the four median amplitudes were
then averaged to obtain an overall (average) median for the interval.

In addition to computing median amplitudes, we also computed the
rate of occurrence of the sferics, and the time interval between
sferics, for each size category and for all sferics in the one-minute
intervals. The interval chosen for this computer analysis was 7-12
June 1968. Thus for each class of sferics there were in principle
96 intervals for which amplitude and occurrence data were obtained each
day, and 576 measurements of each variable were made over the six-day
period. In practice, the longwire antenna was being used for VLF
transmissions during some of the intervals, or the recording system
was not in operation, and useful sferic data were not obtained. There
were 87 such intervals during the six-day period, or about 15% of the
total. This was a significant percentage of outages, but as shown in
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‘ the following section, the remaining data were sufficient to give a !
| complete picture of the variation of sferic amplitudes and occurrences
| at Byrd Station during the SPE.
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V. RESULTS

The principal results of our data analysis are presented in the
form of two figures showing the variation during the 9 June 1968 SPE
of the median amplitudes and rates of occurrence of the sferics
occurring in the one-minute synoptic intervals. A third figure,
showing the variation of the average time between sferics, is also
presented. These figures summarize amplitude and time of occurrence
measurements on a total of 320,181 sferics.

V.1 SFERIC AMPLITUDES

Figure 6 shows the variation of the median amplitude of the 75 Hz
sferics occurring in the one-minute synoptic intervals throughout the
period 7-12 June 1968. In this figure, as well as in the two following
figures, the top panel shows the variation for all sferics, and the
bottom panel shows the individual variations for small (bottom section),
medium (middle), and large (top) sferics. The data points apply to each
minute of synoptic data, and smooth curves have been drawn through these
points by using a computer smoothing algorithm.

Considering the data for all the sferics first, it can be seen
that there is a marked reduction in the median amplitudes of the sferics
during the first 48 hours of the SPE, as compared with the amplitudes
measured during the 56 hours preceding the start of the SPE (i.e., from
0000 UT on 7 June through 0800 UT on 9 June). According to the geomag-
netic activity data in Figure 1, there were no geomagnetic disturbances
in the four days preceding the 9 June event. Further, although Svestka
and Simon (Reference 31) list three instances of satellite detection of
energetic proton bursts, there were no detectable energetic charged
particle precipitation effects on the ground in the week before the 9
June SPE. Thus the ELF propagation conditions from 0000 UT on 7 June
through the commencement of the 9 June SPE appear to be typical of nor-
mal, non-SPE, ionospheric conditions.

There are two daily maximums in the median amplitudes of the sferics
prior to the start of the SPE. The first of these maximums occurs at
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Figure 6. Variation of the median amplitude of 75 Hz sferics observed
at Byrd Station, Antarctica, during the interval 7-12 June 1968.
The top panel shows data for all sferics; the bottom panel shows
data for small (bottom), medium (middle), and large (top) sferics.
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about 0100 UT and the other at about 1000 UT. Because our measurements
give no information about the location of the sferic sources, we cannot
definitely associate these amplitude maximums with particular sferic
source regions. However, following Larsen (Reference 41) and using
statistics for worldwide thunderstorm activity (Reference 42), we can
tentatively associate the maximums with source regions in South-East
(S-E) Asia and in the Americas. According to the latter reference,
there are three large thunderstorm areas in the world: (1) S-E Asia
(the longitude range corresponding to this source region is approxi-
mately 90°-135°E), (2) Africa (15°W-50°E), and (3) the Americas (45°-90°
W). Sferics from a source region in Africa arrive at Byrd Station from
a direction that is roughly magnetic E-W, and thus they are likely to
produce only a small response in the ELF/VLF receiver (see Figure 2

and the previous discussion of the Byrd antennas) and can be neglected.
The thunderstorm activity in each area has a well-defined diurnal
variation; in S-E Asia the activity peaks at about 0800 UT, and in the
Americas it peaks at about 2000 UT. The peaks are broad, and there is
still much Asian activity at 1000 UT and a lesser amount of American
activity at 0100 UT. There are obvious uncertainties in the application
of these average results to our specific data; it appears reasonable,
nevertheless, to associate the 0100 UT maximum in median amplitudes with
thunderstorm activity in the Americas and the 1000 UT maximum with
activity in S-E Asia.

Both maximums are greatly reduced by the SPE. For example, the
median amplitudes during the hour 0100-0200 UT on 10 and 11 June are
reduced by 46% and 58% compared with the corresponding average median
amplitudes calculated for the same hour from the data in the 56-hour
interval preceding the start of the SPE. There is also a reduction
in the minimum median amplitudes. For example, if we make the same com-
parison as that just described for the two-hour interval 1600-1800 UT,
when the median amplitudes normally pass through their lowest values,
we find that the median amplitudes are reduced by 41% on 9 June and by
8% on 10 June.

The data for the categories of small, medium, and large sferics

have variations that are very similar to the variation for all sferics.




.

Together, these variations suggest that the strongest SPE effects occur
in the first 24 hours of the SPE and that the activity ascribed to
thunderstorms in S-E Asia and the Americas is about equally affected
during this interval. Since the area enclosed by the southern auroral
zone lies between Byrd Station and S-E Asia (Figure 2), whereas very
little of this zone lies between Byrd and the Americas, this result also
suggests that the region of the ionosphere disturbed by the energetic
proton precipitation expanded beyond the 1imits of the auroral zone
during 9-10 June.

It is particularly interesting to see signs of recovery of the
median amplitudes on 11 June and the occurrence of a comparatively
large maximum at 0100 UT on 12 June. As pointed out during the
description of the Byrd Station data, a large magnetic storm was in
progress on 11 June, and it was on this day that the Byrd Station
riometer recorded the most intense absorption of the entire SPE.

V.2 RATE OF OCCURRENCE OF SFERICS

Figure 7 shows the rate of accurvence of 75 Hz sferics in the
one-minute synoptic intervals throughout the period 7-12 June 1968.
The most commonly occurring sferics are those we have classified as
being small: their rate of occurrence is always at least twice as
large as the rates for the medium and large sferics, and during the
peak of their well-defined diurnal variation of occurrence the small
sferics occur at a rate that is roughly twice the rate for medium and
large sferics combined. The diurnal variation corresponds closely
with the variation of worldwide thunderstorm activity (Reference 42),
and its peaks also correspond closely with the median amplitude
minimums in Figure 6.

There are several SPE-related points of interest in the data
shown in Figure 7. First, the rate of occurrence of all sferics
increases following the start of the SPE and remains at a higher level
for about 24 hours. Second, the rate of occurrence of all sferics is
decreased during the magnetic storm phase of the SPE. Finally,
examination of the variations for the different size categories shows
that, unlike the amplitude data, the rates of occurrence of the large
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and small sferics are affected differently by the SPE (the data for
medium sferics show no obvious SPE effect).

Comparing the variations for the large and small sferics in
greater detail, we find that the rate of occurrence of the large
sferics first drops sharply in the interval 1400-2000 UT on 9 June and
then rises to a higher Tevel than in the 56 hours preceding the start

of the SPE and remains at that level for about 12 hours before declining.

Thereafter the rate of occurrence of the large sferics appears to be
little affected by the SPE. Interestingly, in the same interval
1400-2000 UT on 9 June the rate of occurrence of the small sferics
reaches a maximum level that is higher than the maximums on 7 and 8
June. From 0000 to 1200 UT on 10 June the rate of occurrence of the
small sferics appears to be higher than normal, as is the case for
the large sferics. The last distinctive feature of the variation in
the rate of occurrence of small sferics is a reduced rate from 1200 to
2400 UT on 11 June during the magnetic storm. Since the rates of
occurrence for the large and medium sferics are unaffected during the
same interval, it is this reduction in the rate of occurrence of small
sferics that accounts wholly for the drop observed in the rate of
occurrence of all sferics.

V.3 AVERAGE TIME BETWEEN SFERICS

Figure 8 shows the average time between 75 Hz sferics in the one-
minute synoptic intervals throughout the period 7-12 June 1968. These
data are simply the data in Figure 7 presented in a different (inverse)
form, and they do not provide any new information. However, they give
a different representation of the variations previously discussed and
emphasize different features. For example, the sudden change in the
rate of occurrence of large sferics in the 24 hours following the start
of the SPE is more obvious in Figure 8.
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31

S o —




Bt o s T S S

VI. DISCUSSION AND CONCLUSION

The data presented in Figures 6 to 8 show that a moderately large
nighttime SPE can significantly affect the characteristics of 75 Hz
sferics occurring at a polar location. The SPE effects include a
reduction in median amplitude of the sferics, and changes in their
rate of occurrence. There is some evidence that the largest SPE
effects occur in the first 24 hours, before the start of the magnetic
storm that forms part of the SPE. During these first 24 hours the
sferic median amplitudes are reduced to about one-half of their
earlier undisturbed values. Although this reduction is substantial, it
is not sufficient to eliminate 75 Hz sferic occurrences at the polar
location, i.e., there is no polar cap 'blackout' of the sferics. Also,
the reduction appears to be no greater than the 4-8 db reductions in
lower-ELF signal strength occasionally observed at lower latitudes in
experiments with the Wisconsin Test Facility (References 10, 11, 13, 15,
and 24).

Based on this study of a single SPE, we conclude that man-made
lower-ELF signals propagating over paths passing through the polar
regions are likely to be reduced in strength, although not severely
(i.e., the reduction will be no greater than about 8 db), during the
first 24 hours of a moderately large SPE. The changes occurring
thereafter will depend on the characteristics of the magnetic storm
phase of the SPE, which are likely to be highly variable, and on the
position of the ELF receiver relative to the auroral zone. Our data f
suggests that the magnetic storm associated changes are likely to be.
no greater than those observed during the first 24 hours.

The start of an SPE is a particularly well-defined geophysical
phenomenon: energetic ions, predominantly protons, suddenly begin
arriving and creating ionization in the D-region of the ionosphere.

Our observation of the simultaneous commencement of riometer absorption,
signalling the start of an SPE, and of a Pc 3 pulsation event on 9 June
1968 is therefore of particular interest, since it may provide new
information about the Pc 3 pulsation generation process. It appears
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that the sudden creation of ionization in the ionospheric D-region
either (1) provides the initial stimulation for a Pc 3 pulsation event,
because of a new impulsive flow of current in the lower ionosphere, or
(2) it provides more ideal conditions at the base of the ionosphere
for the occurrence of a naturally stimulated Pc 3 event. We hope that
further studies can be made of this relationship between SPE's and

Pc 3 pulsations, including, as a first step, verification of the
relationship by analysis of the pulsation activity that occurs during
other SPE's.

It is desirable that the SPE measurements described in this com-
munication be repeated using the controlled lower-ELF signals from the
Wisconsin Test Facility and a unified satellite-ground station observa-
tional network similar to that described by Imhof et al. (Reference 24).
Previous measurement programs in the northern hemisphere have usually
involved few polar stations: greater use of polar stations would
provide better information about the ionospheric region most strongly
affected by SPE's and would facilitate interpretation of the SPE-related
changes in the ELF signal measured at nonpolar locations. Finally, we
note that a planned program of observations, including direction-finding,
of naturally occurring ELF sferics at polar stations, and preferably
at a minimum of two well-separated stations, could also provide much
new information about SPE-effects on ELF signals in the polar regions.
Natural sferics have two advantages over signals from man-made sources
for this purpose. First, they are available at all times for measure-
ment, and second, they reach a polar station from all directions. An
optimum measurement program to determine the effects of an SPE on ELF
signal propagation could well involve a combination of observations
on the signals from the Wisconsin Test Facility at stations located
in and around the northern polar region and observations of naturally
occurring sferics either at the stations in the northern polar region
or in the Antarctic.
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